Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME 501 – MACHINE DESIGN I Fifth Semester, 2015-16 (odd Semester)

Course (catalog) description

Familiarize the students with the fundamental concepts of designing the various elements of machines and to highlight the design approaches in designing shafts, springs, couplings, riveted joints, Welded joints and bolted joints.

:	Compulsory
:	4 & 75
:	V. Jose Ananth Vino
	:

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
V. Jose Ananth Vine	V Sem - A,	ID 106	9040727291	Srinivasan.mech@	
v. Jose Ananth vino	С	JK 100	0940757501	bharathuniv.ac.in	Tuesday 12.30
Dr Palambila	V Sem – B	ID 205	802000775	Manavalan.mech@	to 01.30
Dr. Dalallioika	,FSection JK505 8959990175		bharathuniv.ac.in		
Mr. Sharayanan	V Sem – D,E	ID 105	0052586082	Manikandan.mech@	Wednesday
wii. Sharavallall	Section	JK105	9932380083	bharathuniv.ac.in	12.30 to 01.30

Relationship to other courses:

- Pre –requisites : Mechanics of solids
- Assumed knowledge : Engineering Mechanics
- Following courses : Mechanics of fracture

Design process – Engineering Materials and Mechanical properties – Eccentric loading – Principal stresses – Design criteria – Calculation of permissible stress – Failure theories – Stress Concentration – Design for variable loading –Soderberg, Goodman and Gerberg relations - Introduction to Fracture Mechanics. Introduction to Optimum Design

UNIT II DESIGN OF SHAFTS (9+6)

Design of Shafts using fatigue factors – Shafts carrying pulleys gears – overhanging and simply Supported Shafts - Hollow shafts - Design of Axles.

UNIT III DESIGN OF SPRINGS (9+ 6)

Design of tension and compression Helical springs – Springs for Buffers – Springs for impact loads – Concentric springs - Springs in series and parallel connection –Design of Leaf springs – Semi elliptical cantilever type.

UNIT IV DESIGN OF RIVETED & WELDED JOINTS (9+6)

Design of riveted joint for a Boiler – Lozenge joint – Design of eccentrically loaded riveted joints – Design of Welded joints.

UNIT V DESIGN OF BOLTED JOINTS & COUPLINGS (9+6)

Design of eccentrically loaded bolted joints – Screw fastenings – Gasket joints for cylinders – Design of Rigid couplings, Pin and Bush type flexible couplings, Muff coupling and Clamp coupling

TOTAL 60 HOURS

Text book(s) and/or required materials

TEXT BOOKS :

1. Prabhu T.J. – Fundamentals of Machine Design, 2009.

REFERENCES :

- 1. Bhandari V.B Design of Machine Elements TataMcGraw Hill, 2007
- 2. . Shigley J.E. & Misheka Mechanical Engineering Design2004 McGraw Hill,2007.
- 3. Dobrovolosky, Machine Elements Mir Publications, 1978.
- 4 . Pandya & Shah Elements of Machine Design, 2000. 5. Design Data, PSG College of Technology, 2007.

5

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	100%
Professional subject	-	0%

Broad area : Design of machine

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week Session 1 to 45		3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

Familiarize the students with the fundamental concepts of Management and to highlight the approaches in organization behavior		Correlates to program outcome		
		Н	М	L
1.	Understanding the concepts of Machine design	а	f,I,j	g
2.	Knowledge on Selection of Materials	С	a,e,d	i
3.	Understanding the use of design data book	d	а	h
4.	Knowledge on the optimum design	e,j	a,e,g	i
5.	Clear insight on design principles of various elements of design	а	i	b
6.	In-depth Understanding about the design of components.	f		

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	F Topics		Text / Chapter		
1.	Introduction to design process	yes			
2.	Engineering Materials	No			
3.	Mechanical properties of materials	No			
4.	Eccentric loading	yes			
5.	Principal planes and principal stresses	yes			
6.	Failure theories	yes	[T2] chapter - 5		
7.	Stress concentrations	yes	[12] chapter - 5,		
8.	Design for variable loading	yes			
9.	Introduction to fracture mechanics and optimum design	yes			
10.	Fundamental of shaft design	yes			
11.	Shaft design using fatigue factors	yes			
12.	Design of shafts carrying pulleys	yes			
13.	Design of shafts carrying gears	yes			
14.	Design of overhanging shafts	yes			
15.	Design of simply supported shafts	yes	[T2] chapter – 6		
16.	Design of hollow shafts	yes			
17.	Introduction to spindles and axles	yes			

18.	Design of axles	yes	
UNIT 3 D			
19.	Design of tension springs	yes	
20.	Design of compression springs	yes	-
21.	Closely coiled springs and open coiled springs	yes	
22.	Design of springs for buffer	Yes	
23.	Design of springs for impact loads	yes	[T2] chapter – 6, [R1] chapter - 8
24.	Springs in series and parallel connections	yes	
25.	Design of concentric springs	yes	
26.	Design of leaf springs	yes	
27.	Design of semielliptical and cantilever type springs	yes	
UNIT 4 D	esign of riveted and welded joints		
28.	Introduction to rivets and riveted joints	No	
29.	Types of riveted joints	No	
30.	Design of riveted joints for Boiler.	yes	-
31.	Lozenge jont	yes	
32.	Design of eccentrically loaded riveted joints	yes	[T2] chapter-4, [R1] chapter-2
33.	Introduction to welding and weld joints	yes	
34.	Types of weld joints	yes	
35.	Design of weld joints for static loading	yes	
36.	Design of weld joints for fatigue loading	yes	
UNIT 5 D	esign of bolted joints and couplings		
37.	Introduction to bolted joints	No	
38.	Design of bolt joints	yes	
39.	Design of eccentrically loaded bolted joints	yes	
40.	Design of screw fastenings	yes	
41.	Design of bolts for cylinders with gasket joints	yes	[T2] chapter- 5,6
42.	Types of couplings and their applicationss	No	[R1] chapter–7
43.	Design of rigid couplings	yes	
44.	Design of pin and bush type flexible couplings	yes	
45.	Design of muff coupling and clamp couplings	yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

-		5%
Cycle Test – I	-	370
Cycle Test – II	-	5%
Model Test Assignment / Seminar / Online	-	10%
Test / Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: V. Jose Ananth Vino

Addendum

ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

i) The ability to function on multidisciplinary teams.

j) The ability to communicate effectively with the engineering community and with society at large.

k) The ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.

I) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduates are enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

BME 501 - MACHINE DESIGN I

Course Teacher	Signature
V. Jose Ananth Vino Dr.Balambika	
Mr. Sharavanan	

Course Coordinator HOD/MECH

V. Jose Ananth Vino